ARM Instruction Set

Quick Reference Card

Key to Tables	
\{cond $\}$	Refer to Table Condition Field \{cond\}
<oprnd2>	Refer to Table Operand 2
<fields>	Refer to Table PSR fields
\{S $\}$	Updates condition flags if S present
C $^{\star}, \mathrm{V}^{\star}$	Flag is unpredictable after these instructions in Architecture v4 and earlier
Q	Sticky flag. Always updates on overflow (no S option). Read and reset using MRS and MSR
x, y	B meaning half-register [15:0], or T meaning [31:16]
<immed_8r>	A 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits
<immed_8*4>	A 10-bit constant, formed by left-shifting an 8-bit value by two bits

<a_mode2>	Refer to Table Addressing Mode 2
<a_mode2P>	Refer to Table Addressing Mode 2 (Post-indexed only)
<a_mode3>	Refer to Table Addressing Mode 3
<a_mode4L>	Refer to Table Addressing Mode 4 (Block load or Stack pop)
<a_mode4S>	Refer to Table Addressing Mode 4 (Block store or Stack push)
<a_mode5>	Refer to Table Addressing Mode 5
<reglist>	A comma-separated list of registers, enclosed in braces ($\{$ and \})
$\{!\}$	Updates base register after data transfer if ! present
§	Refer to Table ARM architecture versions

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Operation \& \& § \& Assembler \& S updates \& Q \& Action \& Notes \\
\hline Move \& \begin{tabular}{l}
Move \\
NOT \\
SPSR to register CPSR to register register to SPSR register to CPSR immediate to SPSR immediate to CPSR
\end{tabular} \& 3
3
3
3
3
3
3 \& ```
MOV {cond}{S} Rd, <Oprnd2>
MVN {cond}{S} Rd, <Oprnd2>
MRS{cond} Rd, SPSR
MRS{cond} Rd, CPSR
MSR{cond} SPSR_<fields>, Rm
MSR{cond} CPSR_<fields>, Rm
MSR{cond} SPSR_<fields>, \#<immed_8r>
MSR{cond} CPSR_<fields>, \#<immed_8r>
``` \& \[
\begin{array}{lll}
\mathrm{N} \& \mathrm{Z} \& \mathrm{C} \\
\mathrm{~N} \& \mathrm{Z} \& \mathrm{C}
\end{array}
\] \& \& ```
Rd := Oprnd2
Rd := 0xFFFFFFFF EOR Oprnd2
Rd := SPSR
\(\mathrm{Rd}:=\) CPSR
SPSR := Rm (selected bytes only)
CPSR := Rm (selected bytes only)
SPSR := immed_8r (selected bytes only)
CPSR := immed_8r (selected bytes only)
``` \& \\
\hline Arithmetic \& \begin{tabular}{l}
Add \\
with carry \\
saturating \\
double saturating \\
Subtract \\
with carry \\
reverse subtract \\
reverse subtract with carry \\
saturating \\
double saturating \\
Multiply \\
accumulate \\
unsigned long \\
unsigned accumulate long \\
signed long \\
signed accumulate long \\
signed 16 * 16 bit \\
signed \(32 * 16\) bit \\
signed accumulate \(16 * 16\) \\
signed accumulate \(32 * 16\) \\
signed accumulate long \(16 * 16\) \\
Count leading zeroes
\end{tabular} \& 5E \& ADD \{cond\} \{S\} Rd, Rn, <Oprnd2> ADC \{cond\} \{S\} Rd, Rn, <Oprnd2> QADD \{cond\} \(\mathrm{Rd}, \mathrm{Rm}, \mathrm{Rn}\) QDADD \{cond\} \(R d, R m, R n\) SUB \{cond \} \{S \} Rd, Rn, <Oprnd2> SBC \{cond\} \{S\} Rd, Rn, <Oprnd2> \(\operatorname{RSB}\{\) cond \(\}\) \{S \(\operatorname{Rd}, \operatorname{Rn}\), Oprnd2> \(\operatorname{RSC}\{c o n d\}\{S\} \operatorname{Rd}, \operatorname{Rn},<O p r n d 2>\) QSUB \{cond\} Rd, Rm, Rn QDSUB \{cond\} Rd, Rm, Rn MUL \{cond\} \{S\} Rd, Rm, Rs MLA\{cond\} \{S\} Rd, Rm, Rs, Rn UMULL \{cond \(\}\) \{S \(\}\) RdLo, RdHi, Rm, Rs UMLAL \{cond \} S\(\}\) RdLo, RdHi, Rm, Rs SMULL \{cond \(\{\) S \} RdLo, RdHi, Rm, Rs SMLAL \{cond\} \{S\} RdLo, RdHi, Rm, Rs SMULxy \{cond\} Rd, Rm, Rs SMULWy \{cond\} Rd, Rm, Rs SMLAxy \{cond\} Rd, Rm, Rs, Rn SMLAWy \{cond\} Rd, Rm, Rs, Rn SMLALxy\{cond\} RdLo, RdHi, Rm, Rs CLZ \{cond\} Rd, Rm \& \begin{tabular}{llll}
N \& Z \& C \& V \\
N \& Z \& C \& V \\
\& \& \& \\
N \& Z \& C \& V \\
\& \& \& \\
N \& \& \(Z\) \& \(\mathrm{C}^{*}\) \\
N \& Z \& \(\mathrm{C}^{*}\) \& \\
N \& Z \& \(\mathrm{C}^{*}\) \& \(\mathrm{~V}^{*}\) \\
N \& Z \& \(\mathrm{C}^{*}\) \& \(\mathrm{~V}^{*}\) \\
N \& Z \& \(\mathrm{C}^{*}\) \& \(\mathrm{~V}^{*}\) \\
N \& Z \& \(\mathrm{C}^{*}\) \& \(\mathrm{~V}^{*}\)
\end{tabular} \& Q
Q

Q
Q

Q \& ```
Rd := Rn + Oprnd2
$\mathrm{Rd}:=\mathrm{Rn}+$ Oprnd2 + Carry
$\mathrm{Rd}:=\operatorname{SAT}(\mathrm{Rm}+\mathrm{Rn})$
$\operatorname{Rd}:=\operatorname{SAT}(\operatorname{Rm}+\operatorname{SAT}(\mathrm{Rn} * 2))$
Rd := Rn - Oprnd2
Rd := Rn - Oprnd2 - NOT(Carry)
Rd := Oprnd 2 - Rn
Rd := Oprnd2 - Rn - NOT(Carry)
Rd := SAT(Rm-Rn)
$\operatorname{Rd}:=\operatorname{SAT}(\operatorname{Rm}-\operatorname{SAT}(\mathrm{Rn} * 2))$
$\mathrm{Rd}:=(\mathrm{Rm} * \mathrm{Rs})[31: 0]$
$\mathrm{Rd}:=((\mathrm{Rm} * \mathrm{Rs})+\mathrm{Rn})$ [31:0]
RdHi,RdLo := unsigned(Rm * Rs)
RdHi,RdLo := unsigned(RdHi,RdLo + Rm * Rs)
RdHi,RdLo := signed(Rm * Rs)
RdHi,RdLo : $=\operatorname{signed}(\mathrm{RdHi}, \mathrm{RdLo}+\mathrm{Rm} * \mathrm{Rs})$
$\mathrm{Rd}:=\operatorname{Rm}[\mathrm{x}]$ * $\mathrm{Rs}[\mathrm{y}]$
$\operatorname{Rd}:=(\operatorname{Rm} * \operatorname{Rs}[y])[47: 16]$
$\mathrm{Rd}:=\mathrm{Rn}+\mathrm{Rm}[\mathrm{x}]$ * $\mathrm{Rs}[\mathrm{y}]$
$\mathrm{Rd}:=\mathrm{Rn}+(\mathrm{Rm}$ * $\mathrm{Rs}[\mathrm{y}])[47: 16]$
$\mathrm{RdHi}, \mathrm{RdLo}:=\mathrm{RdHi}, \mathrm{RdLo}+\mathrm{Rm}[\mathrm{x}] * \mathrm{Rs}[\mathrm{y}]$
Rd := number of leading zeroes in Rm

``` & \begin{tabular}{l}
No shift/rotate. No shift/rotate. \\
No shift/rotate. No shift/rotate. \\
No shift/rotate. No shift/rotate. No shift/rotate. No shift/rotate. No shift/rotate.
\end{tabular} \\
\hline Logical & \begin{tabular}{l}
Test \\
Test equivalence \\
AND \\
EOR \\
ORR \\
Bit Clear \\
No operation \\
Shift/Rotate
\end{tabular} & &  &  & & \[
\begin{aligned}
& \text { Update CPSR flags on Rn AND Oprnd2 } \\
& \text { Update CPSR flags on Rn EOR Oprnd2 } \\
& \text { Rd }:=\mathrm{Rn} \text { AND Oprnd2 } \\
& \text { Rd }:=\mathrm{Rn} \text { EOR Oprnd2 } \\
& \text { Rd }:=\mathrm{Rn} \text { OR Oprnd2 } \\
& \text { Rd }:=\mathrm{Rn} \text { AND NOT Oprnd2 } \\
& \mathrm{R} 0:=\mathrm{R} 0
\end{aligned}
\] & Flags not affected. See Table Operand 2. \\
\hline Compare & \[
\begin{array}{|c|}
\hline \text { Compare } \\
\text { negative } \\
\hline
\end{array}
\] & & \[
\begin{array}{lll}
\hline \text { CMP }\{\text { cond }\} & \text { Rn, } & \text { <Oprnd2> } \\
\text { CMN }\{\text { cond }\} & \text { Rn, } & \text { <Oprnd2> } \\
\hline
\end{array}
\] & \[
\begin{array}{lccc}
\hline \mathrm{N} & \mathrm{Z} & \mathrm{C} & \mathrm{~V} \\
\mathrm{~N} & \mathrm{Z} & \mathrm{C} & \mathrm{~V} \\
\hline
\end{array}
\] & & \begin{tabular}{l}
Update CPSR flags on Rn - Oprnd2 \\
Update CPSR flags on Rn + Oprnd2
\end{tabular} & \\
\hline
\end{tabular}

\section*{Vector Floating Point Instruction Set Quick Reference Card}

\section*{Key to Tables}
\{cond\} See Table Condition Field (on ARM side).
<S/D> \(\quad\) S (single precision) or D (double precision).
<S/D/X>
\(\mathrm{Fd}, \mathrm{Fn}, \mathrm{Fm}\)
As above, or X (unspecified precision).
\(\mathrm{Sd}, \mathrm{Sn}, \mathrm{Sm}\) (single precision), or Dd, Dn, Dm (double precision).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Operation} & \multirow[t]{2}{*}{} & Exceptions & Action & \multicolumn{2}{|l|}{Notes} \\
\hline Vector arithmetic & \begin{tabular}{l} 
Multiply \\
\(\quad\) negative \\
\(\quad\) accumulate \\
\(\quad\) deduct \\
\(\quad\) negate and accumulate \\
\(\quad\) negate and deduct \\
Add \\
Subtract \\
Divide \\
Copy \\
Absolute \\
Negative \\
Square root \\
\hline
\end{tabular} & & IO, OF, UF, IX
IO, OF, IX
IO, OF, IX
IO, DZ, OF, UF, IX
IO, IX & \[
\begin{aligned}
& \mathrm{Fd}:=\mathrm{Fn} * \mathrm{Fm} \\
& \mathrm{Fd}:=-(\mathrm{Fn} * \mathrm{Fm}) \\
& \mathrm{Fd}:=\mathrm{Fd}+(\mathrm{Fn} * \mathrm{Fm}) \\
& \mathrm{Fd}:=\mathrm{Fd}-(\mathrm{Fn} * \mathrm{Fm}) \\
& \mathrm{Fd}:=-\mathrm{Fd}+(\mathrm{Fn} * \mathrm{Fm}) \\
& \mathrm{Fd}:=-\mathrm{Fd}-(\mathrm{Fn} * \mathrm{Fm}) \\
& \mathrm{Fd}:=\mathrm{Fn}+\mathrm{Fm} \\
& \mathrm{Fd}:=\mathrm{Fn}-\mathrm{Fm} \\
& \mathrm{Fd}:=\mathrm{Fn} / \mathrm{Fm} \\
& \mathrm{Fd}:=\mathrm{Fm} \\
& \mathrm{Fd}:=\mathrm{abs}(\mathrm{Fm}) \\
& \mathrm{Fd}:=-\mathrm{Fm} \\
& \mathrm{Fd}:=\mathrm{sqrt}(\mathrm{Fm}) \\
& \hline
\end{aligned}
\] & OF
UF
IX & \begin{tabular}{l}
eptions \\
Invalid operation Overflow Underflow Inexact result Division by zero
\end{tabular} \\
\hline \begin{tabular}{l}
Scalar compare \\
Scalar convert
\end{tabular} & \begin{tabular}{l}
Compare with zero \\
Single to double \\
Double to single \\
Unsigned integer to float \\
Signed integer to float \\
Float to unsigned integer \\
Float to signed integer
\end{tabular} &  & IO
IO
IO
IO, OF, UF, IX
IX
IO, IX
IO, IX & Set FPSCR flags on Fd - Fm
Set FPSCR flags on Fd - 0
Dd \(:=\) convertStoD(Sm)
Sd \(:=\) convertDtoS(Dm)
Fd \(:=\) convertUItoF(Sm)
\(\mathrm{Fd}:=\) convertSItoF(Sm)
\(\mathrm{Sd}:=\) convertFtoUI(Fm)
\(\mathrm{Sd}:=\) convertFtoSI(Fm) & Use F Use & AT to transfer flags. AT to transfer flags. \\
\hline \begin{tabular}{l}
Save VFP registers \\
Load VFP registers
\end{tabular} & \begin{tabular}{l}
Multiple, unindexed increment after decrement before \\
Multiple, unindexed increment after decrement before
\end{tabular} & ```
FST<S/D>{cond} Fd, [Rn{, #<immed_8*4>}]
FSTMIA<S/D/X>{cond} Rn, <VFPregs>
FSTMIA<S/D/X> {cond} Rn!, <VFPregs>
FSTMDB<S/D/X> {cond} Rn!, <VFPregs>
FLD<S/D>{cond} Fd, [Rn{, #<immed_8*4>}]
FLDMIA<S/D/X>{cond} Rn, <VFPregs>
FLDMIA<S/D/X> {cond} Rn!, <VFPregs>
FLDMDB<S/D/X> {cond} Rn!, <VFPregs>
``` & & \[
\begin{aligned}
& \hline \text { [address] := Fd } \\
& \text { Saves list of VFP registers, s } \\
& \quad \text { synonym: FSTMEA (em] } \\
& \quad \text { synonym: FSTMFD (full } \\
& \text { Fd }:=\text { [address] } \\
& \text { Loads list of VFP registers, s } \\
& \quad \text { synonym: FLDMFD (ful } \\
& \text { synonym: FLDMEA (em }
\end{aligned}
\] & \begin{tabular}{l}
tarting at pty ascen descendi \\
starting at 1 descend pty ascen
\end{tabular} & \begin{tabular}{l}
ddress in Rn. ng) \\
g) \\
ddress in Rn. \\
g) \\
ing)
\end{tabular} \\
\hline Transfer registers & ARM to single Single to ARM ARM to lower half of double Lower half of double to ARM ARM to upper half of double Upper half of double to ARM ARM to VFP system register VFP system register to ARM FPSCR flags to CPSR & & & \[
\begin{aligned}
& \mathrm{Sn}:=\mathrm{Rd} \\
& \mathrm{Rd}:=\mathrm{Sn} \\
& \operatorname{Dn}[31: 0]:=\mathrm{Rd} \\
& \mathrm{Rd}:=\mathrm{Dn}[31: 0] \\
& \operatorname{Dn}[63: 32]:=\mathrm{Rd} \\
& \operatorname{Rd}:=\operatorname{Dn}[63: 32] \\
& \text { VFPsysreg }:=\mathrm{Rd} \\
& \mathrm{Rd}:=\text { VFPsysreg } \\
& \text { CPSR flags }:=\text { FPSCR flags }
\end{aligned}
\] & Use with Use with Use with Use with Stalls A Stalls A Equivale & \begin{tabular}{l}
FMDHR. \\
FMRDH. \\
FMDLR. \\
FMRDL. \\
M until all VFP ops complete. M until all VFP ops complete. t to FMRX R15, FPSCR
\end{tabular} \\
\hline
\end{tabular}

\section*{Thumb Instruction Set Quick Reference Card}

All Thumb registers are Lo (R0-R7) except where specified. Hi registers are R8-R15.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Operation & & § & Assembler & Update flags & Action & Notes \\
\hline Move & \begin{tabular}{l}
Immediate \\
Lo to Lo \\
Hi to Lo, Lo to Hi, Hi to Hi
\end{tabular} & & ```
MOV Rd, #<immed_8>
MOV Rd, Rm
MOV Rd, Rm
``` & \[
\begin{aligned}
& \checkmark \\
& \checkmark \\
& \times \\
& \times
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Rd}:=\text { immed_8 } \\
& \mathrm{Rd}:=\mathrm{Rm} \\
& \mathrm{Rd}:=\mathrm{Rm} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
8-bit immediate value. \\
Not Lo to Lo
\end{tabular} \\
\hline Arithmetic & \begin{tabular}{l}
Add \\
Lo and Lo \\
Hi to Lo, Lo to Hi , Hi to Hi immediate \\
with carry \\
value to SP \\
form address from SP \\
form address from PC \\
Subtract \\
immediate 3 \\
immediate 8 \\
with carry \\
value from SP \\
Negate \\
Multiply \\
Compare \\
negative \\
immediate \\
No operation
\end{tabular} & & ```
ADD Rd, Rn, #<immed_3>
ADD Rd, Rn, Rm
ADD Rd, Rm
ADD Rd, #<immed_8>
ADC Rd, Rm
ADD SP, #<immed_7*4>
ADD Rd, SP, #<immed_8*4>
ADD Rd, PC, #<immed_8*4>
SUB Rd, Rn, Rm
SUB Rd, Rn, #<immed_3>
SUB Rd, #<immed_8>
SBC Rd, Rm
SUB SP, #<immed_7*4>
NEG Rd, Rm
MUL Rd, Rm
CMP Rn, Rm
CMN Rn, Rm
CMP Rn, #<immed_8>
NOP
``` & \[
\begin{aligned}
& \hline \checkmark \\
& \checkmark \\
& \times \\
& \checkmark \\
& \checkmark \\
& \times \\
& \times \\
& \times \\
& \times \\
& \checkmark \\
& \checkmark \\
& \checkmark \\
& \checkmark \\
& \times \\
& \times \\
& \checkmark \\
& \times
\end{aligned}
\] & ```
Rd := Rn + immed_3
\(\mathrm{Rd}:=\mathrm{Rn}+\mathrm{Rm}\)
\(\mathrm{Rd}:=\mathrm{Rd}+\mathrm{Rm}\)
\(\operatorname{Rd}:=\mathrm{Rd}+\) immed_8
\(\mathrm{Rd}:=\mathrm{Rd}+\mathrm{Rm}+\mathrm{C}\)-bit
SP := SP + immed_7 * 4
Rd := SP + immed_8 * 4
Rd := (PC AND 0xFFFFFFFC) + immed_8 * 4
\(\mathrm{Rd}:=\mathrm{Rn}-\mathrm{Rm}\)
Rd := Rn - immed_3
Rd := Rd - immed_8
Rd := Rd - Rm - NOT C-bit
SP := SP - immed_7 * 4
\(\mathrm{Rd}:=-\mathrm{Rm}\)
\(\mathrm{Rd}:=\mathrm{Rm}\) * Rd
update CPSR flags on Rn - Rm
update CPSR flags on \(\mathrm{Rn}+\mathrm{Rm}\)
update CPSR flags on Rn - immed_8
R8:= R8
``` & \begin{tabular}{l}
3-bit immediate value. \\
Not Lo to Lo \\
8 -bit immediate value. \\
9-bit immediate value (word-aligned). \\
10-bit immediate value (word-aligned). \\
10-bit immediate value (word-aligned). \\
3-bit immediate value. \\
8 -bit immediate value. \\
9-bit immediate value (word-aligned). \\
Can be Lo to Lo, Lo to Hi, Hi to Lo, or Hi to Hi. \\
8-bit immediate value. \\
Flags not affected.
\end{tabular} \\
\hline Logical & \begin{tabular}{l}
AND \\
Exclusive OR \\
OR \\
Bit clear \\
Move NOT \\
Test bits
\end{tabular} & &  &  & \[
\begin{array}{|l|}
\hline \mathrm{Rd}:=\mathrm{Rd} \text { AND Rm } \\
\mathrm{Rd}:=\mathrm{Rd} \text { EOR Rm } \\
\mathrm{Rd}:=\mathrm{Rd} \text { OR } \mathrm{Rm} \\
\mathrm{Rd}:=\mathrm{Rd} \text { AND NOT Rm } \\
\mathrm{Rd}:=\text { NOT Rm } \\
\text { update CPSR flags on Rn AND Rm } \\
\hline
\end{array}
\] & \\
\hline Shift/rotate & Logical shift left Logical shift right Arithmetic shift right Rotate right & & \begin{tabular}{l} 
LSL Rd, Rm, \#<immed_5> \\
LSL Rd, Rs \\
LSR Rd, Rm, \#<immed_5> \\
LSR Rd, Rs \\
ASR Rd, Rm, \#<immed_5> \\
ASR Rd, Rs \\
ROR Rd, Rs \\
\hline BR
\end{tabular} & \[
\begin{aligned}
& \checkmark \\
& k \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Rd}:=\mathrm{Rm} \ll \text { immed_5 } \\
& \mathrm{Rd}:=\mathrm{Rd} \ll \text { Rs } \\
& \mathrm{Rd}:=\mathrm{Rm} \gg \text { immed_5 }^{2} \\
& \mathrm{Rd}:=\mathrm{Rd} \gg \text { Rs } \\
& \mathrm{Rd}:=\mathrm{Rm} \text { ASR immed_5 } \\
& \mathrm{Rd}:=\text { Rd ASR Rs } \\
& \mathrm{Rd}:=\mathrm{Rd} \text { ROR Rs } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
5-bit immediate shift. Allowed shifts 0-31. \\
5-bit immediate shift. Allowed shifts 1-32. \\
5-bit immediate shift. Allowed shifts 1-32.
\end{tabular} \\
\hline Branch & \begin{tabular}{l}
Conditional branch \\
Unconditional branch \\
Long branch with link \\
Branch and exchange \\
Branch with link and exchange \\
Branch with link and exchange
\end{tabular} & 57
57 & B \(\{\) cond \(\}\) label
B label
BL label
BX Rm
BLX label
BLX Rm & & \[
\begin{aligned}
& \mathrm{R} 15:=\text { label } \\
& \mathrm{R} 15:=\text { label } \\
& \mathrm{R} 14:=\mathrm{R} 15-2, \mathrm{R} 15:=\text { label } \\
& \mathrm{R} 15:=\mathrm{Rm} \text { AND } 0 \times \mathrm{xFFFFFFE} \\
& \mathrm{R} 14:=\mathrm{R} 15-2, \mathrm{R} 15:=\text { label } \\
& \text { Change to ARM } \\
& \mathrm{R} 14:=\mathrm{R} 15-2, \mathrm{R} 15:=\mathrm{Rm} \text { AND } 0 \times \text { FFFFFFFE } \\
& \text { Change to ARM if Rm}[0]=0
\end{aligned}
\] & \begin{tabular}{l}
label must be within -252 to +258 bytes of current instruction. See Table Condition Field (ARM side). AL not allowed. \\
label must be within \(\pm 2 \mathrm{~Kb}\) of current instruction. \\
Encoded as two Thumb instructions. \\
label must be within \(\pm 4 \mathrm{Mb}\) of current instruction. \\
Change to ARM state if \(\operatorname{Rm}[0]=0\). \\
Encoded as two Thumb instructions. \\
label must be within \(\pm 4 \mathrm{Mb}\) of current instruction.
\end{tabular} \\
\hline Software Interrupt & & & SWI <immed_8> & & Software interrupt processor exception & 8 -bit immediate value encoded in instruction. \\
\hline Breakpoint & & 5 T & BKPT <immed_8> & & Prefetch abort or enter debug state & \\
\hline
\end{tabular}

\section*{Thumb Instruction Set}

\section*{Quick Reference Card}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Operat & & § & Assembler & Action & Notes \\
\hline Load & \begin{tabular}{l}
with immediate offset, word \\
halfword \\
byte \\
with register offset, word \\
halfword \\
signed halfword \\
byte \\
signed byte \\
PC-relative \\
SP-relative \\
Multiple
\end{tabular} & &  &  & \begin{tabular}{l}
Clears bits 31:16 \\
Clears bits 31:8 \\
Clears bits 31:16 \\
Sets bits 31:16 to bit 15 \\
Clears bits 31:8 \\
Sets bits \(31: 8\) to bit 7 \\
Always updates base register.
\end{tabular} \\
\hline Store & \begin{tabular}{l}
with immediate offset, word halfword byte \\
with register offset, word halfword byte \\
SP-relative, word Multiple
\end{tabular} & & STR Rd, [Rn, \#<immed_5*4>]
STRH Rd, [Rn, \#<immed_5*2>]
STRB Rd, [Rn, \#<immed_5>]
STR Rd, [Rn, Rm]
STRH Rd, [Rn, Rm]
STRB Rd, [Rn, Rm]
STR Rd, [SP, \#<immed_8*4>]
STMIA Rn!, <reglist> &  & \begin{tabular}{l}
Ignores Rd[31:16] \\
Ignores \(\operatorname{Rd}[31: 8]\) \\
Ignores \(\operatorname{Rd}[31: 16]\) \\
Ignores Rd[31:8] \\
Always updates base register.
\end{tabular} \\
\hline Push/
Pop & \begin{tabular}{l}
Push \\
Push with link \\
Pop \\
Pop and return \\
Pop and return with exchange
\end{tabular} & 5 T & ```
PUSH <reglist>
PUSH <reglist, LR>
POP <reglist>
POP <reglist, PC>
POP <reglist, PC>
``` & \begin{tabular}{l}
Push registers onto stack \\
Push LR and registers onto stack \\
Pop registers from stack \\
Pop registers, branch to address loaded to PC \\
Pop, branch, and change to ARM state if address \([0]=0\)
\end{tabular} & Full descending stack. \\
\hline
\end{tabular}

\section*{Proprietary Notice}

ARM is the trademark of ARM Ltd.
Neither the whole nor any part of the information contained in, or the product described in, this reference card may be adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this reference card is subject to continuous developments and improvements. All particulars of the product and its use contained in this reference card are given by ARM in good faith. However, all warranties implied or expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This reference card is intended only to assist the reader in the use of the product. ARM Ltd shall not be liable for any loss or damage arising from the use of any information in this reference card, or any error or omission in such information, or any incorrect use of the product.

\section*{Document Number}

ARM QRC 0001D

\section*{Change Log}
\begin{tabular}{llll}
Issue & Date & By & Change \\
A & June 1995 & BJH & First Release \\
B & Sept 1996 & BJH & Second Release \\
C & Nov 1998 & BJH & Third Release \\
D & Oct 1999 & CKS & Fourth Release
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ENGLAND & \multicolumn{2}{|l|}{GERMANY} & \multicolumn{2}{|l|}{USA} & \multicolumn{2}{|l|}{JAPAN} & \multicolumn{2}{|l|}{KOREA} \\
\hline ARM Ltd & \multicolumn{2}{|l|}{ARM Ltd} & \multicolumn{2}{|l|}{ARM Inc} & \multicolumn{2}{|l|}{ARM KK} & \multicolumn{2}{|l|}{ARM} \\
\hline Fulbourn Road & \multicolumn{2}{|l|}{Otto-Hahn Str. 13b} & \multicolumn{2}{|l|}{750 University Avenue} & \multicolumn{2}{|l|}{Plustaria Building 4F,} & \multicolumn{2}{|l|}{Room \#1115, Hyundai Building} \\
\hline Cherry Hinton & \multicolumn{2}{|l|}{85521 Ottobrun-Riemerling} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Suite 150,}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{3-1-4 Shinyokohama, Kohoku-ku,
Yokohama-shi, 222-0033}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{9-4, Soonae-Dong, Boondang-Ku}} \\
\hline Cambridge CB1 9JN & Munich & & Los Gatos CA & & & & & \\
\hline UK & \multicolumn{2}{|l|}{Germany} & \multicolumn{2}{|l|}{USA} & \multicolumn{2}{|l|}{Japan} & \multicolumn{2}{|l|}{Korea 463-020} \\
\hline Telephone: +441223400400 & Telephone: & +498960875545 & Telephone: & +14085792207 & Telephone: & +81454775260 & Telephone: & +82 3427128234 \\
\hline Facsimile: +441223400410 & Facsimile: & +49 9860875599 & Facsimile: & +14085791205 & Facsimile: & +81454775261 & Facsimile: & +82 3427138225 \\
\hline Email: info@arm.com & Email: & info@arm.com & Email: & info@arm.com & Email: & info@arm.com & Email: & info@arm.com \\
\hline
\end{tabular}

\section*{ARM Instruction Set}

\section*{Quick Reference Card}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Operation & & § & Assembler & Action & Notes \\
\hline Branch & \begin{tabular}{l}
Branch \\
with link \\
and exchange \\
with link and exchange (1) \\
with link and exchange (2)
\end{tabular} & \(4 T\)
5 T

5 T & \begin{tabular}{l}
B\{cond \(\}\) label \\
BL \{cond label \\
BX\{cond Rm \\
BLX label \\
BLX\{cond\} Rm
\end{tabular} & \[
\begin{array}{|l|}
\mathrm{R} 15:=\text { label } \\
\mathrm{R} 14:=\mathrm{R} 15-4, \mathrm{R} 15:=\text { label } \\
\mathrm{R} 15:=\mathrm{Rm}, \mathrm{Change} \text { to Thumb if Rm}[0] \text { is } 1 \\
\mathrm{R} 14:=\mathrm{R} 15-4, \mathrm{R} 15:=\text { label, Change to Thumb } \\
\mathrm{R} 14:=\mathrm{R} 15-4, \mathrm{R} 15:=\mathrm{Rm}[31: 1] \\
\text { Change to Thumb if } \mathrm{Rm}[0] \text { is } 1
\end{array}
\] & \begin{tabular}{l}
label must be within \(\pm 32 \mathrm{Mb}\) of current instruction. \\
label must be within \(\pm 32 \mathrm{Mb}\) of current instruction. \\
Cannot be conditional. label must be within \(\pm 32 \mathrm{Mb}\) of current instruction.
\end{tabular} \\
\hline Load & \begin{tabular}{l}
Word \\
User mode privilege branch (and exchange) \\
Byte \\
User mode privilege signed \\
Halfword \\
signed \\
Pop, or Block data load return (and exchange) and restore CPSR \\
User mode registers
\end{tabular} & 4
4
4 & \begin{tabular}{l}
LDR\{cond\} Rd, <a_mode2> \\
LDR\{cond\}T Rd, <a_mode2P> \\
LDR\{cond\} R15, <a_mode2> \\
LDR\{cond\}B Rd, <a_mode2> \\
LDR\{cond\}BT Rd, <a_mode2P> \\
LDR\{cond\}SB Rd, <a_mode3> \\
LDR\{cond\}H Rd, <a_mode3> \\
LDR\{cond\}SH Rd, <a_mode3> \\
LDM \{cond\}<a_mode4L> Rd\{!\}, <reglist-pc> \\
LDM \{cond\}<a_mode4L> Rd\{!\}, <reglist+pc> \\
LDM \{cond\}<a_mode4L> Rd\{!\}, <reglist+pc>^ \\
LDM \{cond\}<a_mode4L> Rd, <reglist-pc>^
\end{tabular} & \begin{tabular}{l}
Rd := [address] \\
R15 := [address][31:1] \\
(§ 5T: Change to Thumb if [address][0] is 1) \\
Rd := ZeroExtend[byte from address] \\
Rd := SignExtend[byte from address] \\
Rd := ZeroExtent[halfword from address] \\
Rd := SignExtend[halfword from address] \\
Load list of registers from [Rd] \\
Load registers, R15 := [address][31:1] \\
(§ 5T: Change to Thumb if [address][0] is 1) \\
Load registers, branch (§ 5T: and exchange), \\
CPSR := SPSR
\end{tabular} & \begin{tabular}{l}
Use from exception modes only. \\
Use from privileged modes only.
\end{tabular} \\
\hline Store & \begin{tabular}{l}
Word \\
User mode privilege Byte \\
User mode privilege Halfword \\
Push, or Block data store User mode registers
\end{tabular} & 4 & & ```
[address] := Rd
[address] := Rd
[address][7:0] := Rd[7:0]
[address][7:0] := Rd[7:0]
[address][15:0] := Rd[15:0]
Store list of registers to [Rd]
Store list of User mode registers to [Rd]
``` & Use from privileged modes only. \\
\hline Swap & Word Byte & 3 & SWP \(\{\) cond \(\} R d, R m, \quad[R n]\)
SWP \(\{c o n d\} B R d, R m, \quad[R n]\) & \[
\begin{aligned}
& \text { temp }:=[\mathrm{Rn}],[\mathrm{Rn}]:=\mathrm{Rm}, \mathrm{Rd}:=\text { temp } \\
& \text { temp }:=\text { ZeroExtend }([\operatorname{Rn}][7: 0]), \\
& {[\operatorname{Rn}][7: 0]:=\operatorname{Rm}[7: 0], \operatorname{Rd}:=\text { temp }}
\end{aligned}
\] & \\
\hline Coprocessors & \begin{tabular}{l}
Data operations \\
Move to ARM reg from coproc \\
Move to coproc from ARM reg \\
Load \\
Store
\end{tabular} & 5 & \begin{tabular}{l}
CDP \{cond\} p<cpnum>, <op1>, CRd, CRn, CRm, <op2> CDP2 p<cpnum>, <op1>, CRd, CRn, CRm, <op2> MRC \{cond\} p<cpnum>, <op1>, Rd, CRn, CRm, <op2> MRC2 p<cpnum>, <op1>, Rd, CRn, CRm, <op2> MCR\{cond\} p<cpnum>, <op1>, Rd, CRn, CRm, <op2> MCR2 p<cpnum>, <op1>, Rd, CRn, CRm, <op2> LDC \{cond\} p<cpnum>, CRd, <a_mode5> LDC2 p<cpnum>, CRd, <a_mode5> \\
STC \{cond\} p<cpnum>, CRd, <a_mode5> STC2 p<cpnum>, CRd, <a_mode5>
\end{tabular} & Coprocessor defined & \begin{tabular}{l}
Cannot be conditional. \\
Cannot be conditional. \\
Cannot be conditional. \\
Cannot be conditional. \\
Cannot be conditional.
\end{tabular} \\
\hline Software interrupt & & & SWI \{cond\} <immed_24> & Software interrupt processor exception & 24 -bit value encoded in instruction. \\
\hline Breakpoint & & 5 & BKPT <immed_16> & Prefetch abort or enter debug state & Cannot be conditional. \\
\hline
\end{tabular}

\section*{ARM Addressing Modes}

\section*{Quick Reference Card}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Addressing Mode 2-Word and Unsigned Byte Data Transfer} \\
\hline \begin{tabular}{l}
Pre-indexed \\
Post-indexed
\end{tabular} & \begin{tabular}{l}
Immediate offset \\
Zero offset \\
Register offset \\
Scaled register offset \\
Immediate offset \\
Register offset \\
Scaled register offset
\end{tabular} & ```
[Rn, #+/-<immed_12>]{!}
[Rn]
[Rn, +/-Rm]{!}
[Rn, +/-Rm, LSL #<immed_5>]{!}
[Rn, +/-Rm, LSR #<immed_5>]{!}
[Rn, +/-Rm, ASR #<immed_5>]{!}
[Rn, +/-Rm, ROR #<immed_5>]{!}
[Rn, +/-Rm, RRX]{!}
[Rn], #+/-<immed_12>
[Rn], +/-Rm
[Rn], +/-Rm, LSL #<immed_5>
[Rn], +/-Rm, LSR #<immed_5>
[Rn], +/-Rm, ASR #<immed_5>
[Rn], +/-Rm, ROR #<immed_5>
[Rn], +/-Rm, RRX
``` & \begin{tabular}{l}
Equivalent to [Rn,\#0] \\
Allowed shifts 0-31 \\
Allowed shifts 1-32 \\
Allowed shifts 1-32 \\
Allowed shifts 1-31 \\
Allowed shifts 0-31 \\
Allowed shifts 1-32 \\
Allowed shifts 1-32 \\
Allowed shifts 1-31
\end{tabular} \\
\hline \multicolumn{4}{|l|}{Addressing Mode 2 (Post-indexed only)} \\
\hline Post-indexed & \begin{tabular}{l}
Immediate offset \\
Zero offset \\
Register offset \\
Scaled register offset
\end{tabular} & ```
[Rn], #+/-<immed_12>
[Rn]
[Rn], +/-Rm
[Rn], +/-Rm, LSL #<immed_5>
[Rn], +/-Rm, LSR #<immed_5>
[Rn], +/-Rm, ASR #<immed_5>
[Rn], +/-Rm, ROR #<immed_5>
[Rn], +/-Rm, RRX
``` & Equivalent to [Rn],\#0
Allowed shifts 0-31
Allowed shifts 1-32
Allowed shifts 1-32
Allowed shifts 1-31 \\
\hline
\end{tabular}
\begin{tabular}{|ll|l|l|}
\hline \multicolumn{6}{|c|}{ Addressing Mode 3-Halfword and Signed Byte Data Transfer } \\
\hline Pre-indexed & Immediate offset & {\([\mathrm{Rn}, \quad++/-<\) immed_8>] \(\{!\}\)} & Equivalent to [Rn,\#0] \\
& Zero offset & {\([\mathrm{Rn}]\)} & \\
& Register & {\([\mathrm{Rn}, \quad+/-\mathrm{Rm}]\{!\}\)} & \\
Post-indexed & Immediate offset & {\([\mathrm{Rn}], \#+/-<\) immed_8> } & \\
& Register & {\([\mathrm{Rn}], \quad+/-\mathrm{Rm}\)} & \\
\hline
\end{tabular}
\begin{tabular}{|cl|ll|}
\hline \multicolumn{4}{|c|}{ Addressing Mode 4-Multiple Data Transfer } \\
\hline \multicolumn{2}{|c|}{ Block load } & Stack pop \\
\hline IA & Increment After & FD & Full Descending \\
IB & Increment Before & ED & Empty Descending \\
DA & Decrement After & FA & Full Ascending \\
DB & Decrement Before & EA & Empty Ascending \\
\hline & & & \\
\hline Block store & Stack push \\
\hline IA & Increment After & EA & Empty Ascending \\
IB & Increment Before & FA & Full Ascending \\
DA & Decrement After & ED & Empty Descending \\
DB & Decrement Before & FD & Full Descending \\
\hline
\end{tabular}
\begin{tabular}{|ll|l|l|}
\hline \multicolumn{5}{|l|}{ Addressing Mode 5-Coprocessor Data Transfer } \\
\hline Pre-indexed & Immediate offset & {\([\mathrm{Rn}, ~ \#+/-<\) immed_8*4>] \{!\}} & Equivalent to [Rn,\#0] \\
& Zero offset & {\([\mathrm{Rn}]\)} & \\
Post-indexed & Immediate offset & {\([\mathrm{Rn}]\), \#+/-<immed_8*4> } & \\
Unindexed & No offset & \([\mathrm{Rn}]\), \{8-bit copro. option \(\}\) & \\
\hline
\end{tabular}

\section*{ARM architecture versions}
\begin{tabular}{l|l}
\(n\) & ARM architecture version \(n\) and above. \\
\(n \mathrm{~T}\) & T variants of ARM architecture version \(n\) and above. \\
M & ARM architecture version 3M, and 4 and above excluding xM variants \\
\(n \mathrm{E}\) & E variants of ARM architecture version \(n\) and above. \\
\hline
\end{tabular}

\section*{Operand 2}

Immediate value
Logical shift left immediate Logical shift right immediate Arithmetic shift right immediate Rotate right immediate Register
Rotate right extended
Logical shift left register
Logical shift right register Arithmetic shift right register Rotate right register

E variants of ARM architecture version \(n\) and above.
\begin{tabular}{|c|l|l|}
\hline PSR fields & \multicolumn{2}{l|}{ (use at least one suffix) } \\
\hline Suffix & \multicolumn{1}{|l|}{ Meaning } \\
\hline c & Control field mask byte & PSR[7:0] \\
f & Flags field mask byte & PSR[31:24] \\
s & Status field mask byte & PSR[23:16] \\
x & Extension field mask byte & PSR[15:8] \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{2}{|l|}{ Condition Field \{cond\} } \\
\hline Mnemonic & \multicolumn{1}{|l|}{ Description } & Description (VFP) \\
\hline EQ & Equal & Equal \\
NE & Not equal & Not equal, or unordered \\
CS / HS & Carry Set / Unsigned higher or same & Greater than or equal, or unordered \\
CC / LO & Carry Clear / Unsigned lower & Less than \\
MI & Negative & Less than \\
PL & Positive or zero & Greater than or equal, or unordered \\
VS & Overflow & Unordered (at least one NaN operand) \\
VC & No overflow & Not unordered \\
HI & Unsigned higher & Greater than, or unordered \\
LS & Unsigned lower or same & Less than or equal \\
GE & Signed greater than or equal & Greater than or equal \\
LT & Signed less than & Less than, or unordered \\
GT & Signed greater than & Greater than \\
LE & Signed less than or equal & Less than or equal, or unordered \\
AL & Always (normally omitted) & Always (normally omitted) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Key to tables } \\
\hline \begin{tabular}{ll}
\(\{!\}\) \\
<immed_8r> \\
\(+/-\)
\end{tabular} & \begin{tabular}{l} 
Updates base register after data transfer if ! present. (Post-indexed always updates.) \\
A 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits. \\
+ or.\(- ~(+\) may be omitted.)
\end{tabular} \\
\hline
\end{tabular}```

